Math 243	
Summer 2018	
Practice Exam	2
Doomsday	

Name (Print): _____

Time Limit: Probably Not Enough

Problem	Points	Score
1	15	
2	20	
3	20	
4	15	
5	15	
6	20	
7	20	
8	20	
Total:	145	

- 1. (15 points) Let $f(x) = \frac{1}{16-x^2-y^2}$
 - a) Find the domain and range of f(x).

b) Is the domain open/closed or neither? What is the boundary of the domain? Is the domain bounded or unbounded?

c) Graph the level curves $f(x) = \frac{1}{\sqrt{15}}$ and f(x) = 5. Include the vector $\nabla f|_{(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})}$ on the appropriate level curve.

2. (a) (10 points) Find $\lim_{(x,y)\to(2,2)} \frac{x-y+2\sqrt{x}-2\sqrt{y}}{\sqrt{x}-\sqrt{y}}$ if it exists.

(b) (10 points) Find $\lim_{(x,y)\to(0,0)} \frac{x^4-y^2}{x^4+y^2}$ if it exists.

3. (a) (10 points) Find $\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(\frac{y^2 + \sin(y)}{y^4} + x \right) \right)$

(b) (10 points) Let $f(x, y, z) = \frac{ye^{xyz}}{x}$. Find f_x, f_y and f_z .

4. (15 points) a) Suppose that r(t) = g(t) i + h(t) j is a vector valued function such that f(g(t), h(t)) = c for some constant c. Show that ∇f and $\frac{dr}{dt}$ are orthogonal along this level curve.

b) Find the derivative of $f(x,y) = \ln(x^2 + y^2)$ in the direction of v = i + j at the point (1,1).

5. (15 points) a) Let $z = x^2 - y^2 + 3$. Find the equation of the tangent plane at the point (1, 1, 3).

b) The surface $x^2 + y^2 = 4$ is "sliced" by the plane x + y + z + 1 = 0 and forms an ellipse. Find the parametric equations for the tangent line to this ellipse at the point (2, 2, -5).

6. (a) (20 points) Let $f(x,y) = 9x^3 + y^3/3 - 4xy$. Use the second derivative test to find any local min/max or saddle points.

7. (20 points) Find the point on the graph of z=xy+1 that is closest to the origin. (extra credit?)

8. (20 points) Find the cubic approximation for the function $f(x,y) = e^x \ln(1+y)$ centered at the origin.